Marc Baldo

It has long been recognized that luminescent solar concentrators (LSCs) are perhaps the ideal solar concentrator for photovoltaic cells. LSCs are expected to be inexpensive to manufacture and can generate theoretically unlimited optical concentrations without the need to track the sun. But self absorption losses within LSCs have proved difficult to overcome. In this talk, we will address recent developments in photovoltaic cells and LSC technology that prompt a renewed examination of this technology.

Dr. Christiana Honsberg and Dr. Allen Barnett-Achieving a Solar Cell of Greater than 50 Percent: Physics, Technology, Implementation and Milestones

The theoretical limit of solar energy conversion is over 85%, yet the maximum efficiency of any solar cell in the laboratory is less than half this value, and commercial solar cells are only one fifth. For solar cells to meet world’s future energy demands, the challenge is to develop solar cells that achieve efficiencies that approach the thermodynamic limit.

Roland Geyer-Do Lightweight Materials Reduce Automotive Greenhouse Gas Emissions?

Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e. its computational structure is separated from the required input data, which is not traditionally done in LCAs.