Architectural Support for Emerging Workloads

George Tzimpragos
Szilagyi Energy Breakthrough Fellowship
Single-Core Era

Enabled by:
✓ Moore’s Law
✓ Voltage Scaling

Constrained by:
× Power
× Complexity

Multi-Core Era

Enabled by:
✓ Moore’s Law
✓ Voltage Scaling
✓ SMP architecture

Constrained by:
× Power
× Parallel SW
× Scalability

Heterogeneous Systems Era

Enabled by:
✓ Data Parallelism
✓ Power efficient accelerators

Constrained by:
× Programming models
× Integration
× Comm. overhead
Overview of My Research

Productivity tools

Accelerator-rich systems

Emerging workloads and novel computing approaches

Stack of a Computing Problem

- **Problems**
 - Algorithms
 - Programming Languages
 - Runtime and Compilers
 - ISA
- **System Architecture**
 - Implementation
 - MicroArchitecture
 - Logic and Circuits
 - Transistors
 - Manufacturing

Heterogeneous Systems Era

Enabled by:
- ✓ Data Parallelism
- ✓ Power efficient accelerators

Temporarily Constrained by:
- ✗ Programming models
- ✗ Integration
- ✗ Comm. overhead

[Source: HHS Lee, Georgia Tech]
Productivity Tools

CHARM:
- Python-based DSL.
- Unified basis for the representation, execution, and optimization of closed-form high-level architecture models.

PyRTL: design HW pythonically

- Scripts
- Testbench
- HW design

CHARM: Python-based DSL.
Unified basis for the representation, execution, and optimization of closed-form high-level architecture models.

Accelerator-rich Systems

Hardware challenges
- programmability
- code portability
- scalability
- reliability
- OS support

Software challenges
- programmability
- code portability
- scalability
- reliability
- OS support

Programmability vs Reusability
- composable building blocks
- template (meta)programming

App. Domain Expertise
Separation of Concerns
System & HW Expertise

Snapshots & Process Migration

- Read and write “process” state
 - Identify possible switching states with minimum cost.
 - Use existing debug and fault-injection infrastructure to read and write circuit state.

A world of sensors and machine learning!

“The A11 Bionic neural engine is designed for specific machine learning algorithms and enables Face ID, Animoji and other features.”

Dynamic Vision Sensor

Time-of-Flight Sensing
Novel Computing Approaches: “Race Logic”

Where does power go in CMOS?

\[P_{total} = P_{dynamic} + P_{static} \]
\[P_{dynamic} = P_{switching} + P_{shortcircuit} \]
\[P_{static} = (I_{sub} + I_{gate} + I_{junction} + I_{contention}) V_{dd} \]

Ways to reduce power consumption

- Voltage supply
- Load capacitance
- Switching activity
- Clock frequency

Questions

- What happens with the performance of “big data” applications?
- Can “Race Logic” lead to ultra-low-power solutions?

Race Logic

- What if “delay” could be used for computation?
- Can we encode data as “delay”?

(a) min
\[\min(x, y) \]

(b) max
\[\max(x, y) \]

(c) add-by-constant
\[\delta(x, k) \]

(d) inhibit: \[inh(i,j) \]

\[\delta(x, 1) \]
\[inh(x, y) \]
\[inh(y, x) \]
Boosted Race Trees for Low-Energy Classification

User-defined Parameters
- **Machine Learning:**
 - classification method
 - learning rate
 - # of estimators
 - # max depth
 - etc.
- **Hardware Specs:**
 - bits per input
 - memory cell bits
 - technology node
 - routing architecture
 - etc.

ML Library
- Abstract and reform
- Analytics & Preprocessing:
 - features importance
 - votes quantization
 - etc.

Parser
- Map to Hardware
- HW Template:
 - “glue” logic
 - memory gen.
 - etc.
- RTL Library:
 - energy/area estimation
 - Design Space Exploration

Map to Hardware

High-level Arch. Modeling

Parser

ML Library

User-defined Parameters

Hardware Specs:

Boosted Race Trees

Map to Hardware

High-level Arch. Modeling

Parser

ML Library

User-defined Parameters

Hardware Specs:

Boosted Race Trees

Map to Hardware

High-level Arch. Modeling

Parser

ML Library

User-defined Parameters

Hardware Specs:
Boosted Race Trees for Low-Energy Classification
