Load Shifting for Compressor Sequencing in Industrial Refrigeration

Rohit Konda

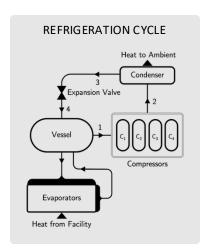
UC Santa Barbara

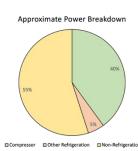
Vikas Chandan

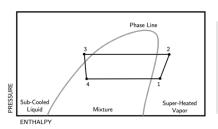
CrossnoKaye Inc.

Jesse Crossno

CrossnoKaye Inc.

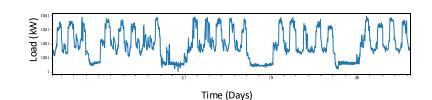

Blake Pollard
CrossnoKaye Inc.


Dan Walsh CrossnoKaye Inc. Rick Bohonek
Butterball Inc.


Jason Marden
UC Santa Barbara

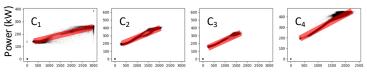
INTRODUCTION

- Industrial refrigeration accounts for more than 8% of total energy usage in the U.S.
- They are prevalent in food processing, plastics, electronics, chemical processing, etc.
- Legacy control techniques are usually implemented: physical operation, manual PID tuning, inherited setpoints



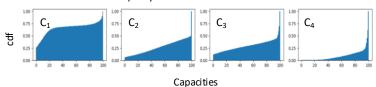
Given knowledge of incoming heat, what is the optimal sequencing policy for the compressors to minimize energy usage?

MODEL


Incoming heat : $\{q_{in}^t \in \mathbb{R}^+\}_{1 \leq t \leq T}$

Compressors:
$$\mathcal{C} = \{c_1, c_2, c_3, \dots\}$$

Power-Heat Curves: $P_c: Q_c \to \mathbb{R}^+$, $Q_c \in \mathbb{Q} \cup [q^-, q^+]$ (affine)

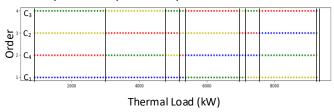

Power-Heat Curves

Thermal Load (kW)

Not optimal to operate in partial capacity – is this being currently done?

Capacity Distributions over June 2023

Opportunities for Compressor Sequencing!


OPTIMIZATION & RESULTS

Static sequencing problem

$$J^*(q^{ ext{in}}) = \min_{q_c \in Q_c} \sum_{c \in \mathcal{C}} P_c(q_c)$$
s.t. $\sum_{c \in \mathcal{C}} q_c \geq q^{ ext{in}}$

Optimal Solution is achievable with water filling algorithm with correct sequence!

Optimal Compressor Sequence for Thermal Load

Dynamic sequencing problem

$$J^*(\mathbf{q}^{\text{in}}) = \min_{\mathbf{q}^{\text{th}}, \{\mathbf{q}_e\}} \quad \frac{1}{T} \sum_{k=0}^{T} \sum_{c \in \mathcal{C}} P_c(q_c(k))$$
s.t. $q_c(k) \in Q_c$ for all $c \in \mathcal{C}, k \in [0, T],$

$$\sum_{k=0}^{\tau} q^{\text{sh}}(k) \ge \sum_{k=0}^{\tau} q^{\text{in}}(k) \text{ for all } \tau \in [0, T],$$

$$\sum_{c \in \mathcal{C}} q_c(k) \ge q^{\text{sh}}(k) \text{ for all } k \in [0, T].$$

fixed order!

Water filling with

Methodology	Average Power
Worst Fixed Order	856.7 kW
Best Fixed Order	562.3 kW
Compressor Sequencing (C.S)	551.0 kW
Online C.S with Load Shifting	444.3 kW
C.S with Load Shifting	443.5 kW

Load Shifting helps significantly!