Electrochemical Energy Storage: Design Principles for Oxygen Electrocatalysts and Aqueous Supercapacitors

Shannon W. Boettcher
Asst. Prof. of Chemistry
University of Oregon
Eugene, USA

Boettcher Solar Materials and Electrochemistry Laboratory

CSMC Center for Sustainable Materials Chemistry
Motivation: Powering the planet

Solar is the only renewable source capable of providing 20-50 TW of power worldwide.

Global power consumption: ~18 TW

Worldwide potential*: Wind < 4 TW, Biomass < 5 TW, Hydro < 1.5 TW, Geothermal < 1 TW, Solar ~ 120,000 TW

Cost of solar energy must be reduced.

We must store that energy.
Solar Materials and Electrochemistry Lab

Solar fuels

2H₂O → O₂ + 4H⁺ + 4e⁻
Fe
Ni
O

OER active site design?

interface theory

scalable III-V semiconductors for PV

GaAs(P)

Ga₂O(g) + As₂(g)

powder source

GaAs grown through mask

SiO₂ mask

1 μm

GaAs film

electrochemical capacitors

nano porous carbon

redox electrolyte

current collector

precise precursors

precise precursors

interface S P M

center for sustainable materials chemistry

Shannon Boettcher – Electrochemical Energy Storage
Solar fuels synthesis using semiconductors and electrocatalysts

Oxygen electrocatalysis has broad importance

- Solar water splitting
- Fuel-cells (ORR)
- Large scale electrolysis
- Air-breathing batteries

http://protononsite.com/
Need for well-defined systems and clean measurements

- Designed for maximum current per geometric area
- Dark colored – poorly suited for integrating in solar fuels systems

What is the role of composition, conductivity, and porosity?

What is the surface-active component?

Complicated!

From Wang et al., Electrochimica Acta, 2005, 50, 2059–2064
How do we design well-defined catalysts? What determines their activity?

James Ranney

Team Catalyst c. 2011

Kerisha Williams (Dr.) Lena Trotochaud
Solution-processed ultra-thin film catalysts

Advantages for fundamental study:

- Catalyst electrical conductivity (largely) irrelevant
- Film composition controlled exactly by precursor solution
- Mass known
- Surface area controlled
- Facile gas and ion transport

~50 wt% surfactant
~ 0.05 M metal nitrate ethanol

Initial target: Ni-Co-O

Mixing Co and Ni oxides reported = better performance.

Electronic? Chemical? Morphological?

\[\text{H}_2\text{O} \rightarrow \text{*OH} \rightarrow \text{*O} + \text{H}_2\text{O} \rightarrow \text{*OOH} \rightarrow \text{O}_2 \]

* Indicates bonded to the surface

(see Rossmeisl, Norskov, etc.)

Oxygen evolution with Ni$_x$Co$_{1-x}$O$_y$ films

Performance increases with increasing Ni content.

No synergistic effect apparent.

Apparent activity of “plain NiO” very high.

Why?

- steady-state (> 15-30 min/step), 1 M KOH (99.999%)
- Hg|HgO 1 M KOH reference (0.929 V vs. RHE at pH 14 or 0.112 V vs. NHE)
- R_s 2-3 Ω via AC impedance

NiCo$_2$O$_4$ 20 μm film,\(^1\) pH 14

Samples containing NiO evolve as a function of time

after 6 hrs at 10 mA cm\(^{-2}\)

as synthesized

activity increases with time

Current Density, \(J \) (mA cm\(^{-2}\))

Overpotential, \(\eta \) (V) - \(iR_s \)

0.3 V vs. Hg|HgO

0.0

0.1

0.2

0.3

NiO\(_x\)

Ni\(^{2+}\)

Ni\(^{3+/4+}\)

h\(^+\), OH\(^-\)

Ni(OH)\(_2\)

NiOOH / NiO\(_2\)

in-situ formation of a NiOOH?

1M 99.999% KOH, 20 mV s\(^{-1}\)

XPS analysis confirms transition to Ni(OH)$_2$/NiOOH

Co substitution suppresses transformation to oxyhydroxide

CV curves collected after 6 hr conditioning:

1M 99.999% KOH, 20 mV s\(^{-1}\)

<table>
<thead>
<tr>
<th>sample</th>
<th>e(^{-}) per metal</th>
<th>e(^{-}) per Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoO(_x)</td>
<td>0.04</td>
<td>n/a</td>
</tr>
<tr>
<td>Ni({0.25})Co({0.75})O(_x)</td>
<td>0.07</td>
<td>0.27</td>
</tr>
<tr>
<td>Ni({0.5})Co({0.5})O(_x)</td>
<td>0.31</td>
<td>0.63</td>
</tr>
<tr>
<td>Ni({0.75})Co({0.25})O(_x)</td>
<td>0.61</td>
<td>0.82</td>
</tr>
<tr>
<td>NiO(_x)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Alloying with Co suppresses formation of Ni(OH)\(_2\) / NiOOH during conditioning.
In-situ phase transformation

Rock Salt (NiO)
* catalysis limited to surface *

Spinel (e.g. Co$_3$O$_4$)
* catalysis limited to surface *

Brucite/Hydrotalcite (e.g. M(OH)$_2$/MOOH)
* catalysis throughout bulk – “3D” *
Ni(OH)$_2$ electrochemistry studied extensively for alkaline batteries

Dennis Corrigan:
- Ni(OH)$_2$ films cathodically electrodeposited
- Fe increases OER activity
 - Fe added intentionally
 - or Fe impurities in electrolyte

Fe is incorporated into electrochemically conditioned NiOOH films

Thin-film OER catalyst quantitative comparison using an EQCM

<table>
<thead>
<tr>
<th>sample</th>
<th>(\eta) @ (J = 1) mA cm(^{-2}) (mV)</th>
<th>Tafel Slope (mV dec(^{-1}))</th>
<th>at (\eta = 300) mV</th>
<th>TOF (sec(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO(_x)</td>
<td>512</td>
<td>49 ± 3</td>
<td>1.3</td>
<td>0.0003</td>
</tr>
<tr>
<td>FeO(_x)</td>
<td>409</td>
<td>51 ± 3</td>
<td>4.5</td>
<td>0.0009</td>
</tr>
<tr>
<td>CoO(_x)</td>
<td>395</td>
<td>49 ± 1</td>
<td>7.6</td>
<td>0.0016</td>
</tr>
<tr>
<td>IrO(_x)</td>
<td>381</td>
<td>42 ± 1</td>
<td>24.2</td>
<td>0.014</td>
</tr>
<tr>
<td>(Fe) Ni({0.5})Co({0.5})O(_x)</td>
<td>321</td>
<td>35 ± 2</td>
<td>273</td>
<td>0.056</td>
</tr>
<tr>
<td>NiO(_x) (Fe)</td>
<td>300</td>
<td>29 ± 0.4</td>
<td>773</td>
<td>0.17</td>
</tr>
<tr>
<td>Fe({0.1})Ni({0.9})O(_x)</td>
<td>297</td>
<td>30 ± 1</td>
<td>1009</td>
<td>0.21</td>
</tr>
</tbody>
</table>

TOF = \# O\(_2\) produced per metal per second

- Fe:NiOOH >10x more active than IrO\(_2\) and >100x more active than CoO\(_x\)
- Highest activity OER known in basic media. Why???

The role of Fe in NiOOH

- Crystal structure and (dis)order?
- “Energetics” of electronic states, i.e. “d-band” position?
- Film electronic conductivity?

![Diagram showing active site between sheets]

Active site between the sheets?

$E_{(Ni^{2+/3+})}$ shifts with [Fe]

Minimizing Fe Impurities

Activity increase with each cycle

Glassy C (GC) rotating disk electrode
Teflon cell, TraceSelect KOH (< 36 ppb Fe)
99.999% Ni(NO₃)₂·6H₂O

Overpotential, \(\eta (V) - iR_u \)

1500 rpm

No applied potential required for Fe incorporation

X-ray photoelectron spectroscopy

Need to use Mg X-ray source

\(\text{Ni}_{0.75}\text{Fe}_{0.25}(\text{OH})_2 \) (25% Fe)

5 CV cycles 5% Fe

No V applied 2% Fe

as deposited 0% Fe
Electrolyte Purification

- Precipitate Ni(OH)$_2$
 - TraceSelect KOH and 99.999% Ni(NO$_3$)$_2$·6H$_2$O
- Wash/centrifuge/decant
- Add electrolyte and shake…

No Fe after 300 CV cycles

Role of 3D structure?

Is β-NiOOH actually more active? Previous reports contain Fe?

“Crystallized” Ni(Fe)OOH

Peaks shift with crystallization of β-NiOH₂ - activity increases

No significant change in OER activity with crystallization

Trotochaud, Young, Ranney, Boettcher, S.W. J. Am. Chem. Soc. 2014.
Fe-Free NiOOH after crystallization

- New peak formation – minimal peak shift
- No increase in activity
- NiOOH very poor OER catalyst without Fe
• Aging increases long-range order
• Fe co-deposition gives larger inter-sheet spacing

Order and sheet spacing apparently not (strongly) related to activity.
Does Fe change electronic conductivity under OER conditions?

For 100 nm NiOOH film at 10 mA cm\(^{-2}\), <1 mV drop

\[\sigma = \frac{I_{\text{cond}} w}{Nl d \Delta V} \]

Not important mechanism for activity enhancement
Other mixed metal oxyhydroxides?

Overpotential $\eta (V) - iR_u$

Current Density (mA cm$^{-2}$)

Potential (E(V) - iR_u vs. Hg/HgO)

Effective Conductivity (S cm$^{-1}$)

OER onset near conductivity onset for FeOOH

Michaela Burke

Burke, Kast, Trotochaud, Boettcher, near submission to JACS 2014.
OER mechanism in (oxy)hydroxides

- NiOOH bad OER catalyst – low activity
- FeOOH has low conductivity thus low apparent activity
- Fe active site likely; modulated by NiOOH / CoOOH electrically conductive “porous” framework

* See also recent theory / XAS from Norskov, Bell

- Conductive NiOOH/CoOOOH = strongly coupled cations; delocalized electrons
A revised volcano plot

Previous Trend:
Ni > Co > Fe > Mn
“oxophilicity” of cation

Real Trend:
NiFe > CoFe > Fe > Co > Ni
Exact opposite

- Design better catalysts
- Integration with AEM
Semiconductor-catalyst interfaces

Part II: Redox-enhanced electrochemical double layer capacitors

David Ji
Xingfeng Wang

Sangeun Chun

Galen Stucky
Brian Evanko
Traditional electrochemical double-layer capacitors

Pros: power, cycle-ability
Cons: carbon cost, flammable electrolyte, low specific/volumetric energy

energy = \frac{1}{2}CV^2

• Merits (vs. EDLC)
 − electrolyte weight as active component
 − increased capacity / specific energy
 − use of aqueous electrolytes with high solubility (limited by low V)

• Challenges
 − self-discharge
 − maintain cycleability and high power

Redox electrolyte “design principles”

- use aqueous electrolyte (safety, cost)
- need different redox processes at negative and positive electrodes
- formal potentials near solvent window (energy)
- high solubility (energy)
- fast kinetics (power)
- stable (cyclability)
- design for slow self discharge??

Potential redox couple species

Need:
- high solubility
- large ΔV btw. couples
- fast kinetics
- slow self discharge

$\text{MV} = \text{methyl viologen}$
Three electrode cell design

- Activated carbon prepared by standard CO$_2$ activation process
- Electrode pellet - AC (85 %) : PTFE (10 %) : Acetylene black (5 wt.%)

10 mg per electrode, ~220 um thick
Control inert electrolyte

C = Q/V energy = 1/2CV^2
Halogen electrolytes for positive electrode

Three electrode Swage-lock cell used to monitor both electrode processes simultaneously.

charging at 1 A/g
Self-discharge dynamics

- I^- and Br^- show *slow* self-discharge rate (specific absorption)
- $Fe(CN)_6^{4-}/Fe(CN)_6^{3-}$ redox couple shows *fast* self-discharge
- $Co(bpy)_3^{2+}/Co(bpy)_3^{3+}$ *extremely fast* self-discharge (electrostatics)

\[
3Br^- \rightarrow Br_3^- + 2e^-
\]

Redox electrolytes for positive electrode

\[\text{H}_3\text{C-N-}\text{NCH}_3^+ \]

\(\text{MV} = \text{methyl viologen} \)

- MV\(^+\) specific absorption slowing self-discharge?

\begin{align*}
\text{Cell potential, } E & (V_{\text{cell}}) \text{ or } E (V \text{ vs. SCE}) \\
\text{Potential, } E & (V) \\
\text{Time, } t & (\text{s}) \\
\text{Energy retention, } \eta & (\%) \\
\text{Open circuit period, } t & (\text{h})
\end{align*}
Combined redox electrolytes

1 M KBr/0.1 M MVCl₂

- Capacitive and faradaic responses evident on both electrodes
- Potentials separated by ~1.4 V – ideal in aq. electrolyte
Combined redox electrolytes

- Competitive over short times with non-aqueous cells
- Replace methyl with heptyl – decreases self discharge dramatically

\[
\text{HV}^{2+} \quad \text{N}^+ \begin{array}{c}
\text{N}^+ \\
\text{N}^+ \\
\text{N}^+ \\
\text{N}^+
\end{array} \quad \text{2Br}^-
\]
Power – energy – stability

Enhanced stability and solubility:

Nernstian electrochemical model

- symmetric electrodes, no separator
- agreement with experimental data
- improved performance possible

Brian Evanko
Summary: Redox Supercapacitors

- redox-active electrolyte = additional capacity
- electrostatics and specific absorption critical to prevent internal shunting
- record performance of ~15 Wh kg\(^{-1}\) for aq. redox capacitor
- >2000 cycles with heptyl-viologen
- useful niche between capacitor and battery?
Acknowledgements

Oxygen Catalysis

Michaela Burke

(Dr.) Lena Trotochaud

Interfaces

Dr. Fuding Lin

Theory and Simulation

T.J. Mills

Interfaces:
Basic Energy Sciences
Solar Photochemistry

OER Catalysis:

CSVT GaAs PV:

Redox Capacitors:

Thin Films:

Shannon Boettcher – Electrochemical Energy Storage