SOLID STATE LIGHTING: STATUS & PROSPECTS

James Ibbetson

5/1/2013
Disclosure: Forward-Looking Statements

This presentation includes forward-looking statements about Cree’s business outlook, future financial results, product markets, plans and objectives for future operations, and product development programs and goals. These statements are subject to risks and uncertainties, both known and unknown, that may cause actual results to differ materially, as discussed in our most recent annual and quarterly reports filed with the SEC.

Important factors that could cause actual results to differ materially include current uncertainty in global market conditions that could negatively affect product demand, collectability of receivables and other related matters; our ability to successfully develop new products; our ability to lower costs; increasing price competition; the complexity of our manufacturing processes and the risk of production delays and higher than expected costs; risks associated with the ramp-up of production for new and existing products; the rapid pace of technology development that could affect demand; and the difficulty of estimating future market demand for our products.

The forward-looking statements in this presentation were based on management’s analysis of information available at the time the presentation was prepared and on assumptions deemed reasonable by management. Our industry and business are constantly evolving, and Cree assumes no duty to update such forward-looking statements to reflect subsequent developments.
How Do We Produce White Light with LEDs?

- Blue LED Chip
 - Determines raw brightness and efficacy
- Phosphor system
 - Determines color point and color point stability
- Package
 - Protects the chip and phosphor
 - Helps with light and heat extraction
 - Primary in determining LED lifetime
In a typical, well-designed lighting fixture, discount component efficacy by ~20% (~10% driver, ~10% optics)
Driving Lumens Affordability with Technology

$/lm, normalized (Cool White, 6500K)

Annual Improvement in $/lm @ 100 LPW

<table>
<thead>
<tr>
<th>Year</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>43%</td>
</tr>
<tr>
<td>2006</td>
<td>45%</td>
</tr>
<tr>
<td>2007</td>
<td>35%</td>
</tr>
<tr>
<td>2008</td>
<td>29%</td>
</tr>
<tr>
<td>2009</td>
<td>45%</td>
</tr>
<tr>
<td>2010</td>
<td>40%</td>
</tr>
</tbody>
</table>

Efficacy (LPW)

Copyright © 2013, Cree Inc.
Real-life Example of Value-Adding Innovations Driving Adoption

2008
• 3200 lm, 90 CRI
• 65 LPW
• Lots of LEDs
• ~$400

2013
• 3200 lm, 90 CRI
• 100 LPW
• 30 LEDs
• $159
• Payback <1y
Key LED Lighting Applications

- Healthcare
- Petroleum & Convenience Store
- Airports
- Restaurants & Hospitality
- Residential
- Education
- Government
- Municipal
- Retail & Grocery
- Auto Dealerships
Light Bulb – RIP?

Low initial cost
High quality white light
Terrible efficiency
Short lifetime

Extra Challenges for LEDs
• Legacy form factor
• Omni-directional
• Customer familiarity

$9.97 (450 lm)
$12.97 (800 lm)
80 CRI
75-85 lm/W (6x)
25,000 hour life (25x)

Looks like a light bulb, lit & unlit

Copyright © 2013, Cree Inc.
A Few Thoughts on What’s Coming

CONVENTIONAL SSL VALUE

• Recent system efficacy gains and cost reduction trends should continue
 – 200lm/W, 100lm/$ systems (but not together for a while)
 – Proliferation across most lighting segments – when and how, not if

NEW VALUE PROPOSITIONS

• Spectral engineering
 – Raise efficacy limits
 – Tailor to physiology
• Novel form factors
• Sophisticated integrated controls
 – Dynamic color tuning