Longer-Running Electric-Car Batteries

By Katherine Bourzac on September 23, 2009

In an advance that could help electric vehicles run longer between charges, researchers have shown that silicon nanotube electrodes can store 10 times more charge than the conventional graphite electrodes used in lithium-ion batteries.

Researchers at Stanford University and Hanyang University in Ansan, Korea, are developing the nanotube electrodes in collaboration with LG Chem, a Korean company that makes lithium-ion batteries, including those used in the Chevy Volt. When such a battery is charged, lithium ions move from the cathode to the anode. The new battery electrodes, described online in the journal Nano Letters, are anodes and can store much more energy than conventional graphite electrodes because they absorb much more lithium when the battery is charged.

For full article see:

http://www.technologyreview.com/energy/23516/?nlid=2387&a=f

Copyright © 2006-2014 The Regents of the University of California, All Rights Reserved.
Idea EngineeringUC Santa Barbara College of EngineeringPrivacyTerms of Use
UCSB  UC Santa Barbara Engineering & the Sciences College of Engineering Division of Math, Life, and Physical Sciences

energy efficiency